Chemical Engineering Thermodynamics
 Quiz 2

January 24, 2019
A Sterling engine is a simple heat engine used to convert low grade heat such as process waste heat or solar heat to shaft work. It has been proposed as an alternative to photovoltaics and has found use in some applications such as pumping water. For harvesting solar energy, the moving parts, relatively low efficiency, and high capital cost of Sterling engine solar generators make them less desirable compared to cheap silicon photovoltaics from China.

The Sterling engine consists of two cylinders and a regenerator which is a heat exchanger that stores and transfers hot or cold energy between cycle steps acting as a preheater or a precooler for the next cycle step. Consider a Sterling engine using hydrogen gas as a working fluid and operating from 2 MPa to 16 MPa with a temperature range of $40^{\circ} \mathrm{C}(\mathrm{A}-\mathrm{B})$ to $300^{\circ} \mathrm{C}$ (C-D).
Assume the ideal gas law is appropriate and $C_{\mathrm{p}}=7 / 2 R$.

A-B Isothermal Compression
$\mathrm{T}^{\circ} \mathrm{C}$
P MPa

40
2-5

B-C Isochoric Regeneration or Transfer

40-300
5-16

C-D Isothermal Expansion

300
16-8

D-A Isochoric Regeneration or Transfer

300-40
8-5
a) For the stage A-B and C-D calculate the work, W_{EC}, and Q.
b) Calculate the work, W_{EC}, and Q for stages B-C and D-A.
c) Calculate the overall work.
d) Consider smaller regeneration steps, so that the low pressures are increased. Explain how this would impact the overall work? Comment on the importance of the regenerative step in the Sterling engine. (Use the PV plot to visualize this change)

For your answers make a table of the type (or use this table):

	isothermal	isochoric	isothermal	isochoric	
	Stage A-B	Stage B-C	Stage C-D	Stage D-A	Net
$\mathbf{T i}^{\circ} \mathrm{K}$					x
$\mathbf{T f}{ }^{\circ} \mathrm{K}$					x
$\mathbf{P i ~ M p a}$					x
$\mathbf{P f ~ M p a}$					x
$\mathbf{W E c ~ k J} / \mathrm{mole}$					
$\Delta \mathrm{H} \mathrm{kJ} / \mathrm{mole}$					
$\Delta \mathbf{U ~ k J} / \mathrm{mole}$					
$\mathbf{Q ~ k J} / \mathrm{mole}$					

1 atmosphere is $14.7 \mathrm{psi}, 1.01 \mathrm{bar}, 0.101 \mathrm{MPa}, 760 \mathrm{mmHg}, 29.9 \mathrm{inHg}$
Gas Constant, R

$$
\begin{aligned}
& =8.31447 \mathrm{~J} / \mathrm{mole}-\mathrm{K}=8.31447 \mathrm{~cm}^{3}-\mathrm{MPa} / \text { mole }-\mathrm{K}=8.31447 \mathrm{~m}^{3}-\mathrm{Pa} / \mathrm{mole}-\mathrm{K} \\
& =8,314.47 \mathrm{~cm}^{3}-\mathrm{kPa} / \text { mole }-\mathrm{K}=83.1447 \mathrm{~cm}^{3}-\mathrm{bar} / \mathrm{mole}-\mathrm{K}=1.9859 \mathrm{Btu} / \mathrm{lbmole}-\mathrm{R}^{(\text {see note } 1)} \\
& =82.057 \mathrm{~cm}^{3}-\mathrm{atm} / \text { mole }-\mathrm{K}=1.9872 \mathrm{cal} / \text { mole- } \mathrm{K}^{\text {(see note } 2)}=10.731 \mathrm{ft}^{3}-\text { psia/lbmole-R }
\end{aligned}
$$

Process Type	Work Formula (ig)
Isothermal	$W_{E C}=-\int P d V=-R T \int \frac{d V}{V}=-R T \ln \frac{V_{2}}{V_{1}}(\mathrm{ig})$
Isobaric	$W_{E C}=-\int P d V=-P\left(V_{2}-V_{1}\right) \quad$ (ig)
Adiabatic and reversible	$\begin{equation*} W_{E C}=-\int P d V=-\int \operatorname{const} \frac{d V}{V^{\left(C_{p} / C_{v}\right)}} \tag{*ig} \end{equation*}$ or $\begin{gather*} \Delta U=C_{V}\left(T_{2}-T_{1}\right)=W_{E C} \tag{*ig}\\ \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\left(R / C_{p}\right)}=\left(\frac{V_{1}}{V_{2}}\right)^{\left(R / C_{r}\right)} \tag{*ig} \end{gather*}$

$Q_{\mathrm{rev}}=\Delta U$ for isochoric (constant volume)
$\mathrm{d} U=C_{\mathrm{V}} \mathrm{d} T$ for isochoric (constant volume) $C_{\mathrm{p}}=C_{\mathrm{v}}+R$ (exact for ideal gas)
$\Delta H=\Delta U+\Delta(P V)=\Delta U+R(\Delta T)$ (exact for ideal gas)

ANSWERS: Chemical Engineering Thermodynamics Quiz 2
January 24, 2019

a) $\operatorname{stoge} A-B$

$$
W_{A B}=-2.38 \mathrm{~kJ} / \mathrm{mde}
$$

$$
\Delta H=\Delta U=0 \quad \Delta T=0
$$

$$
Q=-w_{E C}=2.38 k \mathrm{~T} / \mathrm{hole}
$$

stope $C-D$
isctlenal $300^{\circ} \mathrm{C}\left(573^{\circ} \mathrm{K}\right)$

$$
P_{i}=16 \mathrm{~m} / \mathrm{a} \quad P_{f}=8 \mathrm{M} / \mathrm{a}
$$

$$
W_{E c}=8.31 \frac{\mathrm{~J}}{\mathrm{~W} / \mathrm{md}}(573 \mathrm{~K}) \ln \frac{16 \mathrm{~m} / \mathrm{a}}{\mathrm{~g}} \mathrm{ma}
$$

$$
=3,30 \mathrm{~kJ} / \mathrm{mil} \quad Q=-W_{E C}=-3,30 \mathrm{~kJ} / \mathrm{mll}
$$

$$
\begin{aligned}
& \text { isothermal } 40^{\circ} \mathrm{C} \quad\left(313^{\circ} \mathrm{K}\right) \\
& P_{i}=2 \mathrm{MAG} \quad \Gamma_{f}=5 \mathrm{MPa} \\
& W_{A B}=-R T \ln \frac{V_{2}}{V_{1}}=-R T \ln \frac{P_{1}}{P_{2}} \\
& \therefore-8131 \frac{\mathrm{mracm}}{2 / \mathrm{mole}}(3 / 3 \% \mathrm{~K}) \ln \frac{2}{5} \mathrm{M} / \mathrm{m} / \mathrm{a}
\end{aligned}
$$

b) Stoge B-C

$$
\begin{aligned}
& w_{\text {RC }}=0 \\
& P_{i}=\operatorname{sm} T_{a} \quad P_{f}=16 \mathrm{M} / a \\
& T_{i}=40^{\circ} \mathrm{C}(313 \mathrm{ch}) \quad T_{f}=300^{c} \mathrm{C}(573 \mathrm{~K} \\
& \text { Isomic } Q=\Delta U=\frac{5}{2} 8.31 \frac{T}{\mathrm{mek}}\left(573^{k}-313^{k}\right) \\
& =5.40 \frac{\mathrm{~kJ}}{\mathrm{hg} \mathrm{le}} \\
& \underset{\substack{\text { God }}}{ } \quad \Delta H=\frac{7}{5}\left(5.40 \frac{\mathrm{kF}}{\mathrm{ndb}}\right)=7.56 \frac{\mathrm{kI}}{\mathrm{Nole}} \\
& \text { diaftrwis } \\
& \frac{\text { Stare D-4 }}{\text { iscoteric }} W_{\text {BA }}=0 \\
& D_{i}=8 \mathrm{~mA} \quad P_{f}=5 \mathrm{~m} / \mathrm{a} \\
& T_{i}=30^{\circ}(573 \mathrm{~K}) \quad T_{f}=40^{\circ} \mathrm{c}(313 \mathrm{~K})
\end{aligned}
$$

Isubare

$$
\begin{aligned}
& \text { Srubrve } \\
& \text { End. Vilume } Q=\Delta u=\frac{5}{2}\left(8.31 \frac{5}{\mathrm{mal} 6}\right)(313 \mathrm{k}-573 \mathrm{k}) \\
&=-5.40 \mathrm{~kJ} / \mathrm{arl}
\end{aligned}
$$

$$
\begin{aligned}
& \text { idol } \\
& \text { d:a kamc }
\end{aligned} \Delta H=\frac{7}{5} \Delta u=-7.56 \mathrm{kT} / \mathrm{ar} \mathrm{l}
$$

c) Ocriall $\omega_{\text {ta }} K$

$$
3.30 \frac{\mathrm{~kJ}}{\mathrm{arl}}-2.3 \varepsilon \frac{\mathrm{~kJ}}{\mathrm{mde}}=0.92 \frac{\mathrm{~kJ}}{\mathrm{male}}
$$

d) Smaller repmeratia sters uculd derrease the difference hetwon the wall in AB and DC cyien leodir, to loss net wak. The reponealive stop is vocy importomat to an effecenct stedia, precen.

